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1 Introduction 

Implemented security protocols are basically pieces of software which are used to (a) 
authenticate the other communication partners, (b) establish a secure communication 
channel between them (using insecure communication uiediaj , a d  (c) transfer data 
betweel? the comrnmication pxtners  in such a way that these data only available to 
the desired receiver, but not to anyone else. Such an implementation usually consists 
of the following components: the protocol-engine, which controls in which sequence 
the messages of the protocol are sent over the network, and which controls the as- 
sembly/disassembly and processing (e.g. , decryption) of the data. the cryptographic 
routines to actually encrypt or decrypt the data (using given keys), and t,he interface to 
the operating system and to the application. 

For a correct working of such a security protocol, all of these components must 
work flawlessly. Many formal-methods based techniques for the analysis of a security 
protocols have been developed. They range from using’ specific logics (e.g.: BA4X-logic 
[4!) or higher order logics [12] to model checking :2] approaches. In each approach, the 
analysis tries to prove t.hat no (or a t  least not a modeled intruder) can get access to 
secret data. Otherwise, a scenario illustrating the &tack may be produced. Despite the 
seeming simplicity of sec-wity pmtacds (“oiily” 8 few messages are sent between the 
protocol partners in order to ensure a secure communication), many flaws have been 
detected. 

Unfortunately, even a perfect protocol engine does not guarantee flawless working 
of a security protocol, as incidents show. Many break-ins and security vulnerabilities 
are caused by exploiting errors in the implementation of the protocol engine or the 
underlying operating system. Attacks using buffer-overflows are a very common class 
of such attacks. Errors in the implementation of exception or error handling can open 
up additional vulnerabilities. For example, on a website with a log-in screen: multiple 
tries with invalid passwords caused the expected error message (too many retries). but 
let the user nevertheless pass. 

Finally, security can be compromised by silly implementation bugs or design deci- 
sions. In a commercial VPN software, all calls to  the encryption routines were inciden- 
tall?; replaced by stubs, probably during factory testing. The product worked nicely. 



and the error (an “open“ VPN) would have gone undetected, if a team member had not 
inspected the low-level traffic “out of curiosity”. 

Also, the use “secret” proprietary encryption routines can backfire, because such 
algorithms often exhibit weaknesses which can be exploited easily (see e.g.. DVD en- 
coding). 

Summarizing, there is large number of possibilities to make errors which can com- 
promise the security of a protocol. In today‘s world with short time-to-market and the 
use of security protocols in open and hostile networks for safety-critical applications 
(e.g., power or air-traffic control), such slips could lead to catastrophic situations. 

Thus, formal methods and automatic reasoning techniques should not be used just 
for the formal proof of absence of an attack, but they ought to be used to provide an 
“end-to-end” tool-supported framework for security software. With such an approach 
all required artifacts (code, documentation, test cases) , formal analyses, and reliable 
certification will be generated automatically, given a single, high level specification. By 
a combination of program synthesis, formal protocol analysis, certification; and proof- 
carrying code, this goal is within practical reach. since all the important technologies 
for such an approach actually exist and only need to be assembled in the right way. 

2 The Ingredients 

In such an envisioned end-to-end solution for security protocols; a number of tasks must 
be performed upon the input specification. In the following sections, we will briefly 
discuss the required steps and present existing approaches which can provide a basis. 

The input to such a tool will be a detailed specification of the protocol. Typically, 
a security protocol is specified as a sequence of messages which are sent between the 
different protocol participants. Thus, scenarios: sequence diagrams, or STDs are suitable 
for specifying security protocols (cf. [13, 91). Due to its widespread use and the existence 
of (commercial) tools, UA4L might be a good choice. Its various ways of modeling 
systems allows the protocol designer a flexible way of specifying all aspects of the security 
protocol. Besides the “raw” protocols, there will be annotations (e.g., in BAN logic), 
scenarios for failures and exception handling ( “don‘t-do use-cases”): as well as definitions 
and interfaces regarding the actuai data to be communicated and the connection with 
the underlying operating system. Also attack scenarios could be specified within UML. 
Such a UML specification provides the basis for all analyses and synthesis tasks. 

2.1 Protocol Analysis 

A first and important step during protocol design is the automatic analysis of the proto- 
col. Here, properties about authentication, secrecy, confidentiality, etc. are proven in a 
formal way, or attack scenarios are generated. For this task, a large body of approaches 
and tools exist. Counter examples which represent a successful attack on the proto- 
col should be converted into UML sequence diagrams for easy human readability and 
simulation. Positive proofs should be, where possible, represented in a formalism un- 
derstandable for the protocol designer/analyzer. For example, the tool BAN-SETHEO 
[15] uses a first-order ATP to  find the proofs, and then converts and typesets the proofs 
as proofs in the BAN-logic. Alt.hough, in many cases; an ”OK” might be sufficient, such 
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praofs should be kept in such a way that they can be checked (manually or automati- 
cally) by an independent certification authority. 

2.2 Analysis of Cryptographic Routines 

Traditional protocol analysis (as discussed above) assumes that implementation and the 
encryption routines are correct. Due to their mathematical complexity; encryption rou- 
tines need to be checked with regard to their encryption strength and other properties. 
This task is probably the most difficult part in the entire scenario, and, within the fore- 
seeable future, off-line manual development of such proofs will be the only option. For 
practical purposes: libraries of standardized and certified cryptographic routines can be 
used. 

2.3 Protocol Software Synthesis 

Up to this stage. all analysis steps have been performed on a high-level specification of 
the security protocol. This specification now needs to be implemented as real code. -4s 
discussed earlier; this coding phase is very error-prone. ?&le are therefore proposing the 
automatic generation cf the protocol s o b a r e  using techniques of automatic program 
synthesis. Based on the protocol specification and guided by required properties, an 
implementation of the protocol software can be synthesized automatically. By using a 
formal-methods based approach, it can be guaranteed (or certified, see below) that the 
implementation does not violate any of the security properties established and proven 
during the protocol analysis. 

There is a number of interesting approaches toward automatic synthesis of security 
protocols. e.g., [14], 1201. or [5]. A main goal of these approaches is to automatical- 
ly generate a secure and efficient protocol. given a property-based specification. In 
our framework. however, we can be much less ambitious. We already have a detailed 
specification of the protocol (as set of sequence diagrams). Therefore. we can -me an 
approach like [19] which takes a set of annotated UML sequence diagrams and generates 
highly structured statecharts fiom them. From statecharts, traditional code-generation 
techniques can be used to yield the final executable code. 

In this application, correctness of the generated artifacts is paramount. Therefore, 
traceability between specification and synthesized code, as well as the generation of 
the appropriate documentation is important. Here; work from program synthesis. e.g.. 
[ lS.  171 can be adapted. 

2.4 Automatic optimization of protocols 

In application x-ith small bandwidth (e.g.. aircraft-ground communications). it is im- 
portant that the execution of the security protocol does not unnecessarily burden the 
communication channels. Thus. a security protocol with a minimal number of protocol 
steps should be preferred. Also important is the ratio T of the size of actual (secure) 
user data vs. the transmitted data. In the traditional layered protocol architecture. 
each layer is adding its own wrapper and control information around the data. leading 
to small values of T .  Some protocols. for example. will send a 1024 byte package. even if 
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only a few bytes need to be transmitted. Optimizing such a behavior manually, howev- 
er, is extremely error-prone. Furthermore, optimization goals for security protocols can 
contradict those for traditional protocols (e.g., replacing f - l ( f ( D ) )  by D is not legal 
i f f  is a cryptgraphic routine). Techniques for formal protocol optimization (e.g., [lo]) 
could be of high value here. 

2.5 Automatic Certification of Protocol Software 

Once the protocol software has been synthesized, it should be ready to be deployed. 
However, a protocol synthesis tool is an extremely large and complex piece of software 
itself, so its formal verification is not practical. In order to overcome this problem, 
the approach of product certification can be used: instead of verifying of the synthe- 
sizer, each synthesized program is certified individually. Certificates are automatically 
generated proofs that the program fulfills certain properties. These certificates can be 
checked independently (e.g., by a certification authority). 

We have developed a program synthesis system (AvTOBAYES/AvTOFILTER) with 
such a certification extension [16, 71. During synthesis, the program is automati- 
cally adorned by annotations. Then, a Hoare-style verification generator produces a 
number of first-order logic proof obligatioris. After simplification, these proof obliga- 
tions are processed by an automated theorem prover. With this approach, traditional 
language-specific properties (e.g., array-bounds, variable initialization) can be proven; 
also domain-specific properties can be handled by this system. Such a system can be 
used to certify all important properties of synthesized security software. For additional 
security, this approach can be combined with the proof-carrying code techniques 16, 11; 13 
to provide tamper-proof certificates when the code is used in mobile applications. 

In addition to the tasks discussed above, the specific characteristics of security pro- 
tocols must be threaded through the entire software lifecyle. For example, the software 
process (in particular the parts dealing with V&V) needs to be augmented specifically 
to handle security protocols in a proper way (cf. [ 3 ] ) .  Also testing of a security protocol 
is somewhat different from testing ordinary software. Finally, the successful operation 
of a security protocol substantially relies on its correct use: the best security protocol 
is of little use if users write the passwords on sticky notes and place them next to the 
cornpter; c?r if passwords are “reused” [8]. 

The design, development, and deployment of a reliable and secure security protocol 
has to address many issues which go beyond the analysis of the core security protocol. 
Tremendous progress in this field has been accomplished by using automated reasoning 
techniques (e.g., theorem proving, model checking) for the analysis task. The potential 
for automated reasoning techniques in the area of security protocols is by far not exhaust- 
ed: during practically every life-cycle step of a protocol development, formal-methods 
based techniques can-and must-be applied. By combining existing approaches to 
protocol analysis, program synthesis, logic-based optimization, automated certification, 
and proof carrying code, it will be possible to develop a powerful and practically useful 
framework and tool for safe and secure ”end-to-end” protocol design. 
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